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The satisfiability of a class of random Boolean equations named massive algebraic system septated to linear
and nonlinear subproblems is studied in this paper. On one hand, the correlation between the magnetization of
generators and the clustering of solutions of the linear subproblem is investigated by analyzing the Gaussian
elimination process. On the other hand, the characteristics of maximal elements of solutions of the nonlinear
subproblem are studied by introducing the partial order among solutions. Based on the algebraic characteristics
of these two subproblems, the upper and lower bounds of satisfiability threshold of massive algebraic system
are obtained by unit-clause propagation and leaf-removal process, and coincide as the ratio of nonlinear
equations q�0.739 in which analytical values of the satisfiability threshold can be derived. Furthermore, a
complete algorithm with heuristic decimation is proposed to observe the approximation of the satisfiability
threshold, which performs more efficiently than the classical ones.
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I. INTRODUCTION

As basic theoretical models of the computational com-
plexity literature in computer science, random constraint sat-
isfaction problems �CSPs� are studied in a wide range of
theoretical and applicable areas �1–3�. Over the past twenty
years, much attention has been paid to study the phase tran-
sition phenomena of some hard NP-complete CSPs, which
cannot be determined whether they are satisfiable or not in
polynomial time in the worst case by any known algorithm,
e.g., satisfiability problem �4,5�, number partitioning �6�, and
graph coloring �7�. It is considered to be an open problem in
computer science to find the rigorous description of the sat-
isfiability threshold, which is important to understand the
phase transition intrinsically for a class of CSPs.

In recent years, how to identify the exact values of the
thresholds of satisfiability and depict the complexity evolu-
tion of CSPs as the constraint density increases has been
extensively investigated in mathematics, computer science,
and statistical physics �8–10�. When equation density is
close to the satisfiability threshold, local searching algo-
rithms may face a sparse solution space with complicated
organization. This brings great obstruction for searching pro-
cedures, which leads to high computational complexity.
There are also some mathematical estimations of boundaries
on satisfiability threshold for some random CSPs. Based on
the technique of finite-size scaling window, the phase transi-
tion behavior is proved to be continuous with an order pa-
rameter critical exponent for 2-SAT problem �11,12�. Using
the first-moment and second-moment methods, the upper and
lower bounds for the sharp SAT/UNSAT threshold of random
satisfiability problem have been studied �13,14�.

Some characteristics of solution space, e.g., clustering and
freezing of solutions, are considered as the essential hardness
for algorithms. On intuitive grounds, the clustering phenom-
enon is considered to be in an intermediate SAT phase and

responsible for blocking many local searching algorithms.
Techniques from statistical physics of glassy systems have
been introduced to investigate these characteristics of orga-
nization of solutions �15–17�. For random k-SAT problem,
the analytical value of satisfiability threshold and the cluster-
ing phenomenon in solution space are investigated by the
mean-field cavity method �18�. Specifically, survey propaga-
tion algorithm has been proposed, which can find the solu-
tions of random formulas in the satisfiable regime very suc-
cessfully in the case of enormous number of variables �19�.
For another problem, XORSAT, the satisfiability threshold
and the clustering phenomenon have been studied rigorously
by cavity method in the viewpoint of the geometrical orga-
nization of solution space �20–22�.

In this paper, the correlation between the algebraic prop-
erties and the organization of solutions of XORSAT problem,
the self-averageness of the number of solutions and the mag-
netization of generators with clustering, are studied by ana-
lyzing the process of Gaussian elimination. Furthermore, the
statistical characteristics of maximal elements of solutions of
a class of nonlinear Boolean equations are studied to achieve
a general landscape of the evolution of the solution space in
the viewpoint of set theory. As a combination of linear and
nonlinear Boolean equations, a model massive algebraic sys-
tem �MAS� is proved to be NP-complete. By analyzing the
unit-clause propagation and leaf-removal algorithm, the up-
per bounds and lower bounds of the satisfiability threshold
with different ratios of nonlinear equations are obtained. The
lower and upper bounds coincide as the ratio of nonlinear
equations q is larger than 0.739. Based on the study on the
algebraic properties of subproblems of MAS, we propose a
complete algorithm whose performance is more effective
than that of classical ones, and approximate the location of
the satisfiability threshold by this algorithm. The statistical
algebraic study of MAS provides rigorous ways to reveal the
complicated organizations of the solutions, to locate the sat-
isfiability threshold exactly and to design effective algo-
rithms relying on mathematical properties of the problems.*Corresponding author; weiw@buaa.edu.cn
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II. GENERATORS AND MAGNETIZATION
OF XORSAT PROBLEM

As a variant of k-satisfiability problem, the XORSAT
problem is important for decoding of the low density parity
checks of practical interest �23�. The detailed characteriza-
tion of the phase diagram of this problem, including the lo-
cation of threshold and clustering phenomenon, has been
studied in �20� by both cavity method and leaf-removal
analysis. Specially, the self-averageness of the percolation
core after leaf-removal is proved by the moment method.
Further, the x -satisfiability threshold of the XORSAT prob-
lem is investigated to measure the distances among solutions
in different clusters �21�. In this section, we will provide
some understanding to the self-averageness of the organiza-
tion of the solutions and the formation of clusters in the
viewpoint of algebra.

An XORSAT formula is defined by a string of Boolean
variables and equations with the operation of Boolean addi-
tion, which can be solved in polynomial time by Gaussian
elimination �24–26�. In this paper, we specialize to the in-
stances of random k-XORSAT problem. A k-XORSAT in-
stance is defined as: considering a set of N variables
x1 ,x2 , . . . ,xN, we choose M =�N equations randomly and in-
dependently that involve k variables with the operation of
Boolean addition

�
i=1

k

xai
= Ja�mod 2�, for all a = 1,2, . . . ,M , �1�

where ai� �1,2 , . . . ,N� and Ja� �0,1�.

A. Self-averageness of the number of generators and solutions

For satisfiable instances of k-XORSAT problem, all the
equations are linearly independent with probability one, oth-
erwise it is unsatisfiable with some positive probability
which is larger than 1

2 . To solve the problem, an important
alternative method is Gaussian elimination. In the satisfiable
phase of XORSAT problem, Gaussian elimination proceeds
until the coefficient matrix of these linear equations is trans-
formed to be an upper triangular matrix. This global algo-
rithm will take at most O�N3� steps in the worst case and
may take O�N2� steps when the coefficient matrix is sparse
�24�. Furthermore, to obtain the mechanism of the organiza-
tion of solutions, a reversed elimination is added after the
Gaussian elimination procedure which is shown in Fig. 1.

Without loss of generality, assume that the diagonal ele-
ments in the resulted matrix after the eliminations are
x1 ,x2 , . . . ,xM, respectively. Then, each of the diagonal ele-

ments x1 ,x2 , . . . ,xM only appears in one single row of the
resulted matrix. It is easy to verify that any assignment of
xM+1 ,xM+2 , . . . ,xN uniquely fixes the assignment of the other
variables x1 ,x2 . . . ,xM to achieve a single solution. Since all
the variables xM+1 ,xM+2 , . . . ,xN are free to take values in
�0,1�, there are N−M degrees of freedom for the variables in
the solutions.

Considering an instance of k-XORSAT ��i=1
k xai

=Ja�a=1,2,. . .,M with solution space S, by the knowledge of
algebra, the solution space S� of a homogeneous instance
��i=1

k xai
=0�a=1,2,. . .,M is isomorphic to S. Then, it is easy to

verify that S� is a group of solutions by the operation of
Boolean addition. By algebraic approach, there are N−M
generators of all the solutions of the homogeneous
k-XORSAT problem, which can be in the form of

��. . . ,xM+1 = 0, . . . ,xi−1 = 0,xi = 1,xi+1 = 0, . . . ,xN = 0�,

�M + 1 � i � N� . �2�

For that arbitrary assignment on xM+1 , . . . ,xN can fix only
one solution, there are 2N−M solutions for any random in-
stance with high probability. This result has a clear algebraic
description of the formation and configuration of the solution
space of k-XORSAT problem and verifies the self-
averageness of the number of solutions in the satisfiable
phase.

B. Magnetization of the generators with the clustering

In recent years, the space of solutions breaking into many
disconnected clusters is studied by statistical mechanics
�15,18�. Roughly speaking, solutions in different clusters
have Hamming distance O�N� and cannot reach each other
by finite flipping. For the existence of this geometrical orga-
nization of the solutions, the invalidity of searching algo-
rithms is ascribed to the extensive distances and sparseness
among the solutions �27�. Long-range correlation among the
variables with distance at least O�log N� on the factor graph
is considered as the origin of clustering phenomenon �28�,
i.e., cycles on the factor graph make the variables correlated.
For random 3-XORSAT, a percolation core with long-range
correlation exists when 0.818469���0.917935, in which
flipping the assignment of any variable forces infinite other
variables changing assignments to keep the satisfiability and
the solution space splits into many clusters �20�.

To gain further understanding of the clustering phenom-
enon by algebra, we precisely focus on the statistical charac-
teristics of the magnetization of generators which plays core
status in the group and affects the organization of the solu-
tions. Define the magnetization function on the assignments
as

m�sa� = m�x1
a, . . . ,xN

a � = �
i=1

N

xi
a, �3�

which counts the number of 1s of a configuration sa, a
� �1,2 , . . . ,2N�.

Since the formation of a set of generators that can gener-
ate all the solutions is not unique, it is meaningful to find the
simplest formation with the lowest magnetization. If all such
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FIG. 1. The evolution of the coefficient matrix in the procedure
of the Gaussian and reversed elimination for XORSAT problem.
The symbol � represents 1 or 0, which suggests whether the vari-
able is in the corresponding equation or not.

GUO et al. PHYSICAL REVIEW E 81, 031122 �2010�

031122-2



generators with the lowest magnetization have finite magne-
tization, all the solutions can reach each other by flipping
finite values of variables and are in the same cluster. Consid-
ering a set of generators �g1 ,g2 , . . . ,gM−N� with finite mag-
netization, any solution s can be written as the Boolean ad-
dition of several generators, e.g., s=g1+g2+ . . .+gk. To view
the distance between generator g1 and solution s, we con-
struct a generating chain as �g1 ,g1+g2 , . . . ,g1+g2+ . . .
+gk−1 ,s�. Herein, the distance between any adjacent elements
in such generating chain is finite. By this chain effect, we
obtain that the solution s must be in the same cluster as the
generator g1. Thus, all the solutions generated by
�g1 ,g2 , . . . ,gM−N� must be in one single cluster.

We can obtain the corresponding correlation between the
magnetization of the generators in simplest formation and
the percolation core after leaf-removal process by the prop-
erty of locked occupation problem �27,29� and the leaf-
removal analysis �20�. For XORSAT problem, when the per-
colation core does not exist, one only need to flip finite
variables to go from one solution to another, which can be
derived from the literature of reconstruction on trees �29�. In
this case, for the trivial solution �xi=0, i=1, . . . ,N� and some
variable xi, assigning value 1 to xi and considering its influ-
ence propagation as in �20,30,31�, another solution with only
finite variables �including xi� taking 1s can be obtained
which with lowest magnetization is chosen to be one of the
generators in the simplest formation. When the percolation
core exists, one must flip at least a closed loop of variables,
and there must exist at least one generator with magnetiza-
tion O�log�N�� even O�N� in any formation of the generators.
In order to calculate the ratio t of variables in the percolation
core, we quote the expression in �20�

1 − t = �1 − e−3��1−t��2, �4�

in which � is the equation density. When ��0.818469, Eq.
�4� only has two trivial solutions t=0 and t=1, the generators
with the simplest formation have finite magnetization, and
then all the solutions are in one single cluster. When �
�0.818469, Eq. �4� has some nontrivial solution, there exists
some generators in the simplest formation with infinite mag-
netization, which indicates that the solution space splits into
clusters.

At the ending of this section, we discuss the magnetiza-
tion of generators for different degree distributions of the
factor graph of XORSAT problem �20�. For the case of Pois-
son distribution, the existence of generators with infinite
magnetization fits well with the results gained from both Eq.
�4� and leaf-removal. But for the case of power-law distribu-
tion, similar deduction as Eq. �4� is not in effect and the
existence of generator with infinite magnetization only cor-
responds to the existence of percolation core after leaf-
removal procedure. Numerical results of leaf-removal algo-
rithm and Eq. �4� of XORSAT with different degree
distributions are shown in Fig. 2.

III. PARTIAL ORDER RELATION AND MAGNETIZATION
IN NONLINEAR BOOLEAN EQUATIONS

The XORSAT problem only consists of linear equations
with the operation of Boolean addition, which makes it a

tractable problem. To break the symmetry among the vari-
ables, nonlinear factors �multiplication� are recognized as an
alternative choice in mathematics. On Galois field Z2, multi-
plication is Boolean conjunction indeed. As a variant of sat-
isfiable problem involving both Boolean addition and multi-
plication, a model named MAS nonlinear �30� proposed to
investigate detailed organizations of the solution space of a
class of CSPs rigorously, is studied by the set theory and
magnetization in this section.

In a MAS-nonlinear instance, there are N Boolean vari-
ables and M =�N equations chosen randomly from the en-
semble of all the possible equations with the form

xi + xj · xk = 0, 1 � i, j,k � N . �5�

It is easy to obtained that two trivial solutions �xi=0, i
=1, . . . ,N� and �xi=1, i=1, . . . ,N� always exist in the solu-
tion space for any MAS-nonlinear instance. Supposing s1

= �x1
1 , . . . ,xN

1 � and s2= �x1
2 , . . . ,xN

2 � are two solutions of a
MAS-nonlinear instance �x�a,i�+x�a,j� ·x�a,k�=0�a=1

M , for each
equation, we have

x�a,i�
1 = x�a,j�

1 · x�a,k�
1 ,

x�a,i�
2 = x�a,j�

2 · x�a,k�
2 ⇒ x�a,i�

1 · x�a,i�
2 = �x�a,j�

1 · x�a,j�
2 � · �x�a,k�

1 · x�a,k�
2 � .

�6�

Therefore, s3=s1 ·s2= �x1
1 ·x1

2 , . . . ,xN
1 ·xN

2 � can satisfy all the
M equations in this instance and is also a solution. It means
that the solution space Snl of a MAS-nonlinear instance
forms a semigroup with Boolean multiplication. The magne-
tization of the configuration of MAS-nonlinear is defined the
same as Eq. �3�.

To get a clear description of the magnetization of solu-
tions of MAS-nonlinear, a partial order ‘�’ among the con-
figurations is introduced as
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FIG. 2. �Color online� Numerical results of leaf-removal algo-
rithm and theoretical curves of Eq. �4� of 3-XORSAT problem. The
blue triangles represent the ratio of variables in the percolation core
after leaf-removal procedure in the Poisson distribution case by
numerical simulation with N=105, where the parameter � repre-
sents the equation density. The red triangles represent the ratio of
variables in the percolation core after leaf-removal procedure in the
power-law case by numerical simulation with N=104, where the
parameter � represents the power exponent.
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s1 � s2 ⇔ ∧
1�i�N

�xi
1 � xi

2� ⇒ �m�s1� � m�s2�� . �7�

This partially ordered relation can be derived by the Boolean
multiplication relation among configurations as following:

s3 = s1 · s2 ⇒ �s1 � s3� ∧ �s2 � s3� .

Therefore, all the solutions in MAS-nonlinear problem form
a partially ordered set.

In the viewpoint of algebra, semigroup is completely de-
termined by its generators. The formation of its generators
plays a key role in understanding the organization of the
solution space of MAS-nonlinear. In the view point of set
theory, maximal elements possess a crucial status in a par-
tially ordered set. Except the solution �xi=1, i=1, . . . ,N�, all
the generators of the semigroup have one-one correspon-
dence with the maximal elements under the above partially
ordered relation. That is to say, generators have larger mag-
netization than ordinary solutions and cannot be generated
by the Boolean multiplications of others.

As the generators of the solutions of MAS-nonlinear are
maximal elements under the partially ordered relation ‘�’,
the fewer 0s are assigned in a solution, the more possible it
acts as a generator. To identify whether a solution is a maxi-
mal element or not, the influence propagation process when
one variable takes value 0 should be investigated.

To ensure the satisfiability of an instance when we fix the
assignments to variables stepwise, the influence propagation
of a variable assigned to 0 in equation xi+xj ·xk=0 should be

xi = 0 ⇒ �xj = 0� ∨ �xk = 0� ,

xj = 0 ⇒ xi = 0,

xk = 0 ⇒ xi = 0. �8�

Then, by analyzing the influence propagation from some
variable fixed to 0, the formation of the maximal elements
can be obtained which undergoes three different phases
through �= 1

4 and �= 1
3 �30�.

As a paralleled study, the influence propagation of a vari-
able taking 1 in equation xi+xj ·xk=0 is in the following:

xi = 1 ⇒ �xj = 1� ∧ �xk = 1� ,

xj = 1 ⇒ xi = xk,

xk = 1 ⇒ xi = xj . �9�

It has been obtained that O�N� variables have to be fixed to
1s by the influence propagation for some variable assigned to
1 when the equation density ��0.5 �30�.

By the above analysis of the influence propagation of 0
and 1, when ��

1
4 , the magnetization of almost all the maxi-

mal elements concentrates to some typical value which is as
large as N ��N�; when 1

4 ���
1
3 , the magnetization of the

maximal elements concentrates to several typical values
which are as large as N, and the number of maximal ele-
ments with lower magnetization is much larger than those
with higher magnetization; when 1

3 ���
1
2 , the magnetiza-

tion of the maximal elements concentrates to several typical

values, some of which are of a finite fraction of N �O�N��
and some of which are as large as N, and the number of
maximal elements with lower magnetization �O�N�� is
greatly larger than those with higher magnetization ��N�;
when ��

1
2 , as the emergency of the percolation core of both

the influence propagation of 0 and 1, the maximal elements
can be classified into two different classes, between which
the Hamming distance is scaled by the size of the percolation
core induced by the influence propagation of �30�. Therefore,
the set of the maximal elements �generators� of the solution
space undergoes four different phases shown in Fig. 3, which
makes the formation of the maximum elements more and
more complicated and the solution space possesses increas-
ingly structural complexity.

IV. SATISFIABILITY THRESHOLD OF MASSIVE
ALGEBRAIC SYSTEM

Combing the two types of Boolean equations from XOR-
SAT and MAS-nonlinear, a model named MAS is proposed
in �32�. A MAS instance is defined as: considering a set of N
variables x1 ,x2 , . . . ,xN, we choose M =�N equations ran-
domly and independently with the form of

xi + xj + xk = Jijk or xi + xj · xk = 0, �10�

where Jijk� �0,1�. This model is proposed for building the
correspondence between the classical phase transitions and
the mathematical thresholds in the viewpoint of algebra.
Here we focus on the algorithmic characteristics of the en-
sembles of the random instances of MAS and the properties
of the two independent parts which are septated artificially
but coupled together indeed as the constraints to the solu-
tions.

A. Proof for NP-completeness of MAS

As a constraint satisfiability problem, MAS is NP-
complete. A proof is given in the following.

1
4

α ≤
11
34

α< ≤
11
23

α< ≤
1
2

α >

O

O N

N
N

FIG. 3. �Color online� A schematic view for the magnetization
variation in maximal elements of solutions with equation density �
in different regions. The chromatic bands and the regions filled with
shadow represent the maximal elements and the set of assignments
in which the solutions generated by the maximal elements involve,
respectively. The red, blue, and green bands represent the numbers
of maximal elements are ��N�, �pol�N�, and �exp�N�, respec-
tively, which can be obtained similarly as in our previous work
�30�. The gap corresponding the purple bands in the last graph
suggests the clustering of maximal elements, which results in the
splitting of the solutions.
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Suppose f �Z2�x1 , . . . ,xn� is a Boolean quadratic polyno-
mial with the form

f�x� = f�x1, . . . ,xn� = �
	i,j


xi · xj + �
l=1

t

xk�l� + c , �11�

where 1� i� j�n, 1�k�l��n, and c is a constant. Replace
the quadratic items in f�x� by nonlinear formulas �w=xi ·xj,
w=1, . . . ,s, in which s is the number of quadratic items.
Then, f�x� is equivalent to

f�x1, . . . ,xn,�1, . . . ,�s� = �
w=1

s

�w + �
l=1

t

xk�l� + c , �12�

�w = xi · xj, w = 1, . . . ,s . �13�

After introducing some new intermediate Boolean vari-
ables g, h, ys, zs, a more concise form can be obtained,

g + h + �1 = c, �w + xi · xj = 0, w = 1, . . . ,s , �14�

g + �2 + y2 = 0, . . . ,ys−2 + �s−1 + �s = 0, �15�

h + xk�1� + z1 = 0, z1 + xk�2� + z2 = 0,

. . . ,zt−2 + xk�t−1� + xk�t� = 0. �16�

Denoting the above system as P�x ,x��, where

x� = ��1, . . . ,�s,g,h,y2, . . . ,ys−2,z1, . . . ,zt−2� ,

we have

f�x� = 0 ⇔ ∃ x� � �0,1�2s+t−3s . t . P�x,x�� = 0. �17�

As the number s of quadratic items should be less than n�n
−1� /2, the total number of variables in P must not be larger
than 2n2.

Therefore, for a set of Boolean quadratic polynomials F
= �f1 , . . . , fm��Z2�x1 , . . . ,xn�, there is a system P
= �P1 , . . . , Pm� associated with it and

F is satisfiable ⇔ P is satisfiable,

in which F has n variables and P has at most 2n2 variables
and mn2 equations. The system P is with the form of MAS,
and a Boolean quadratic polynomial system can be reduced
to MAS in polynomial time �no more than mn2 steps indeed�.
For that solving Boolean quadratic polynomial system is a
NP-complete problem �33�, it is evident that MAS is NP-
complete.

B. Upper and lower bounds of satisfiability threshold
by unit-clause propagation

Since MAS problem consists of two types of different
equations, it is interesting to consider the satisfiability thresh-
old of this problem. Defining a parameter q as the ratio of
nonlinear equations in MAS, it is easy to see that MAS
changes from a linear system to a nonlinear system, when q
varies from 0 to 1.

In this section, we propose the upper bounds and lower
bounds of the satisfiability thresholds of MAS with different

values of parameter q by analyzing a variant of unit-clause
algorithm �34�. This algorithm is for the satisfiability judg-
ment of Boolean equation constraints and still named UC for
short in this paper. The basic UC resolution round consists of
a free step and several forced steps �35�. In a free step, the
algorithm chooses a variable randomly or according to some
heuristic strategy. In a forced step, the unit clause propagates
under the condition of preserving the satisfiability of the
original problem. Therefore, the forced steps in each round
can be viewed as a branching process.

Considering an instance of MAS with the equation den-
sity � and parameter q, we analyze the transition matrix M
of the branching process for forced steps of UC algorithm.
Writing t as the number of rounds completed so far and X�t�
as the number of variables which have been already set to
some values so far. To obtain X�t� dynamically, we focus on
the evolution of the expected number of variables assigned to
1/0 in each round, which are denoted as m1 /m0, respectively,
by analyzing the state of equations after the free step or
forced steps of each round. Following a free step, there are
six cases of the resulted equations:

Case A. xi+xj ·xk=0, where i , j ,k� �1,2 , . . . ,N�. The
equations in form of case A are the original nonlinear equa-
tions of the problem, the number of which is denoted as NA;

Case B. xi+xj +xk=1, where i , j ,k� �1,2 , . . . ,N�. The
equations in form of case B are the original linear equations
of the problem, the number of which is denoted as NB;

Case C. xi+xj +xk=0, where i , j ,k� �1,2 , . . . ,N�. The
equations in form of case C are the original linear equations
of the problem, the number of which is denoted as NC;

Case D. xi+xk=0, where i , j ,k� �1,2 , . . . ,N�. The equa-
tions in form of case D are the resulted equations by assign-
ing the linear-part variable of equations in case A to 1 or
assigning one variable of the equations in case B /C to 1/0,
the number of which is denoted as ND;

Case E. xj ·xk=0, where i , j ,k� �1,2 , . . . ,N�. The equa-
tions in form of case E are the resulted equations by assign-
ing the linear-part variable of equations in case A to 0, the
number of which is denoted as NE;

Case F. xi+xk=1, where i , j ,k� �1,2 , . . . ,N�. The equa-
tions in form of case F are the resulted equations by assign-
ing one variable of the equation in case B /C to 0/1, the
number of which is denoted as NF.

If X variables have been set to some values after t com-
pleted rounds, the probability of a variable appearing in a
given equation with two variables is 2 / �N−X�, and the prob-
ability of a variable appearing in a given equation with 3
variables is 3 / �N−X�. Based on the insights gained from the
study on the constraints propagation process of the subprob-
lem MAS nonlinear, we can obtain the expected number of
unit clauses �equations� created by the assignment to some
variable in free step. When some variable is set to 1, the rest
variables appearing in the equations of both case E and F are
forced to be assigned to 0, the number of which are
2NE / �N−X� and 2NF / �N−X�, respectively. Meanwhile, the
rest variables appearing in the equations of both case A and
D are forced to be assigned to 1, the numbers of which are
2NA / �N−X� and 2ND / �N−X�, respectively. When some vari-
able is set to 0, the rest variables appearing in the equations
of both case A and D are forced to be assigned to 0, the
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numbers of which are 2NA / �N−X� and 2ND / �N−X�, respec-
tively. In the same condition, the rest variables appearing in
the equations of case F are forced to be assigned to 1, the
number of which is 2NF / �N−X�. Thus, we have the expres-
sion of the transition matrix with respect to X as following:

M�X� =
2

N − X
�NA�X� + ND�X� NF�X�

NE�X� + NF�X� NA�X� + ND�X�
� .

�18�

Concerning on the fraction of the variables assigned to cer-
tain value, this transition matrix can be rewritten as

M�x� =
2

1 − x
�nA�x� + nD�x� nF�x�

nE�x� + nF�x� nA�x� + nD�x�
� , �19�

where x=X /N, nA�x�=NA�X� /N, nD�x�=ND�X� /N, nE�x�
=NE�X� /N, and nF�x�=NF�X� /N. The largest eigenvalue of
M�x� is

	max�x� =
2

1 − x
�nA�x� + nD�x� + nF�x��nE�x� + nF�x��� .

�20�

If the largest eigenvalue of M�x� is less than 1, the ex-
pected number of variables fixed to certain values can be
calculated by the following formula:

�m1

m0
� = �I + M�x� + M�x�2 + . . .� · P0 = �I − M�x��−1 · P0,

�21�

where P0= �p ,1− p�T represents the initial probability vector
of expected population of unit clauses and I is the identity
matrix. When 	max�1, the numbers m0 and m1 are remain-
ing O�1� in one round, and the UC algorithm succeeds with
positive probability. On the other hand, when 	max�1, the
number of variables forced to assigned certain values prolif-
erates to O�N� with high probability and contradiction exists
with a positive probability.

The next step is to analyze the lower bound from the
condition of 	max�1 for all values of x by random heuristic
strategy in the free step of each round. Since there are two
possible values for a randomly chosen variable with uniform
probability from the unassigned variables, we define a pa-
rameter r to represent the probability that a chosen variable
is set to 1 �to 0 with probability �1−r��. In round t and t
+1, we obtain the expressions of the expected changes in the
number of fixed variables between the beginnings of two
rounds,

E�
X�t�� = �m0 + m1� , �22�

E�
NA�t�� = − �m0 + m1�
3NA�X�
N − X

+ o�1� , �23�

E�
NB�t�� = − �m0 + m1�
3NB�X�
N − X

+ o�1� , �24�

E�
NC�t�� = − �m0 + m1�
3NC�X�
N − X

+ o�1� , �25�

E�
ND�t�� = − �m0 + m1�
2ND�X�
N − X

+ m1
2NA�X� + 3NB�X�

N − X

+ m0
3NC�X�
N − X

+ o�1� , �26�

E�
NE�t�� = − 2�m0 + m1�
NA�X� + NE�X�

N − X
+ m0

NA�X�
N − X

+ o�1� ,

�27�

E�
NF�t�� = − �m0 + m1�
2NF�X�
N − X

+ m0
3NB�X�
N − X

+ m1
3NC�X�
N − X

+ o�1� . �28�

When the number of variables N tends to infinity, as in �34�,
we can rewrite them in the form of differential equations
where the o�1� items are ignored,

dnA�x�
dx

=
− 3nA�x�

1 − x
, �29�

dnE�x�
dx

=
m0

m0 + m1

nA�x�
1 − x

−
2nE�x�
1 − x

, �30�

dnD�x�
dx

=
m1

m0 + m1

2nA�x� + 3nB�x�
1 − x

+
m0

m0 + m1

3nC�x�
1 − x

−
2nD�x�
1 − x

, �31�

dnB�x�
dx

=
− 3nB�x�

1 − x
, �32�

dnC�x�
dx

=
− 3nC�x�

1 − x
, �33�

dnF�x�
dx

=
m0

m0 + m1

3nB�x�
1 − x

+
m1

m0 + m1

3nC�x�
1 − x

−
2nD�x�
1 − x

.

�34�

The initial conditions of these equations are nA�0�=�q,
nB�0�=nC�0�= �1 /���1−q�, and nD�0�=nE�0�=nF�0�=0. By
solving these differential equations, we get the expressions
of the expected numbers of the variables in case A, B, C, and
F,

nA�x� = �q�1 − x�3, �35�

nB�x� = nC�x� =
�

2
�1 − q��1 − x�3, �36�
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nF�x� =
2

3
��1 − q�x�1 − x�2. �37�

For a given value of parameter r, we can derive the nu-
merical results from Eqs. �20�, �21�, and �29�–�34�. Using the
method in �35�, we find that the random heuristic parameter
r equals to 0, which implies the best choice to lead to fewest
implication by numerical experiment results. The lower
bound of the satisfiability threshold of MAS with respect to
parameter q is chosen as the maximum element in the set
�� �	max�x ,� ,q��1,x� �0,1��.

When a single round cascade from the initial variables
could fix a finite fraction of the unassigned variables in the
large N limit, the process of unit-clause propagation in
forced steps will cause contradiction of assignments with
high probability. By this condition, we can obtain the upper
bound when O�N� variables are percolated with a positive
probability in some rounds, i.e., the number of residual un-
assigned variables X equals to zero on the edge of some
critical rounds. From this point of view, there will be such
contradiction if 	max�0�=2q��1, and the upper bound of
SAT/UNSAT transition is

�upper =
1

2q
. �38�

By the results of the above computation, we find that the
lower and upper bounds coincide as the ratio of nonlinear
equations q is larger than 0.739. It means that the satisfiabil-
ity threshold can be exactly located by the upper and lower
bounds when the ratio of nonlinear equations is in the inter-
val �0.739,1�. Figure 4 shows the upper bounds derived by
unit-clause propagation and the first-moment method �1MM�
�32� and the lower bounds by unit-clause confliction and
leaf-removal process.

C. Leaf-removal analysis for massive algebraic system

Leaf-removal analysis is a classical method which can be
used to find the percolation core of large-scale problems,

such as XORSAT �20� and Vertex-Cover problems �36,37�.
In the following, the leaf-removal process for massive alge-
braic system is analyzed, to reduce the scale of instance and
estimate lower bounds of the satisfiability thresholds of MAS
with different values of parameter q.

All the MAS instances can be represented as bipartite
factor graphs �19� with N variable nodes and M =�N equa-
tion nodes. Each equation node only connects with 3 variable
nodes. By the random graph theory, as N sufficiently large,
each variable node connects to k equation nodes with prob-
ability

f	�k� =
	k

k!
e−	, 	 = 3�, k � 0 � N .

For the linear equation xi+xj +xk=Jijk in MAS, the equation
node connects to 3 variables nodes with solid lines; and for
the nonlinear equation xi+xj ·xk=0, the equation node con-
nects to the linear-part variable xi with solid line and the two
nonlinear part variables xj and xk with dashed lines. By ran-
dom graph theory, each variable node connects with k linear
equation nodes with probability

f	l
�k� =

	l
k

k!
e−	l, 	l = 3�1 − q��, k � 0 � N ,

and connects with k nonlinear equation nodes with probabil-
ity

f	nl
�k� =

	nl
k

k!
e−	nl, 	nl = 3q�, k � 0 � N .

By the graphical representation of MAS instances, a sys-
tematic analysis for the leaf-removal process will be pro-
vided by both theoretical and numerical ways. For a MAS
instance, there exist three leaf-removal conditions which
keep its satisfiability unchanged.

Case I. If some variable appears in exact one linear equa-
tion, i.e., this variable corresponds to a leaf variable node on
the factor graph, then there always exists some assignment of
the variable to satisfy this equation;

Case II. If some variable appears as the linear-part vari-
able in exact one nonlinear equation, i.e., this variable corre-
sponds to a leaf variable node on the factor graph, then there
always exists some assignment of the variable to satisfy this
equation;

Case III. If the two nonlinear-part variables of a nonlinear
equation never appear in other equations, i.e., these two vari-
ables correspond to two leaf variable nodes connected to the
same equation node on the factor graph, then there always
exists a pair of assignments of these two variables to satisfy
this equation.

On the original factor graph corresponding to the original
MAS instance, for that the leaves in the above Case I, II, and
III do not affect the satisfiability of the whole instance, re-

TABLE I. The lower bounds of satisfiability threshold by leaf-removal.

q 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

�L 0.819 0.576 0.399 0.331 0.284 0.252 0.225 0.201 0.182 0.166 0.154
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FIG. 4. �Color online� The phase diagram of MAS.

ALGEBRAIC CHARACTERISTICS AND SATISFIABILITY … PHYSICAL REVIEW E 81, 031122 �2010�

031122-7



moving these leaves with their connecting equations will
produce a new equivalent instance of the original one with
smaller scale under the consideration of satisfiability. After
the leaf-removal, there will exist new produced leaves on the
residual factor graph satisfying the conditions in Case I, II,
and III, which allows the continued leaf-removal on the re-
sidual graph. Thus, the leaf-removal can be performed until
no such leaves satisfying the conditions in Case I, II, and III
exist. The final residual graph is percolation core1 in the
literature of leaf-removal �20,36,37�. By careful inspection, it
is easy to find that the satisfiability of the percolation core is
equivalent to that of the original instance.

In the following, we provide a theoretical analysis for the
leaf-removal, in which the Case III is neglected as the
amount of leaves in condition of Case III occupies a rela-
tively small fraction. Let fk�t� be the probability of a variable
node with degree k after tN equation nodes are removed. It is
easy to see that t ranges from 0 to � and fk�0�
=e−3��3��k /k ! = f	�k�. Then the evolution equations of fk�t�
are read as

� f0�t�
�t

= �2 ·
f1�t�
m�t�

+ 1���1 −
2

3
q�t��� , �39�

� f1�t�
�t

= �2 ·
2f2�t� − f1�t�

m�t�
− 1��1 −

2

3
q�t�� , �40�

� fk�t�
�t

= �2 ·
�k + 1�fk+1�t� − kfk�t�

m�t�
��1 −

2

3
q�t��, k � 2,

�41�

in which q�t�= q

�1−q�e−2/3t+q
, m�t�=3��−�0

t �1− 2
3q�t��dt�. In the

above equations, q�t� is the ratio of nonlinear equations after

tN steps of leaf-removal and q�0�=q. After each step of leaf-
removal, the number of variable nodes with degree 0 in-
creases with 1 if the chosen leaf is in a linear equation or a
linear-part variable in a nonlinear equation, which makes the
contribution of �1− 2

3q�t��.
For a MAS instance, if the final residual graph �percola-

tion core� has no edges, i.e., all the equations can be removed
by the strategy above, then it must have an assignment sat-
isfying all the equations. By the theoretical analysis and ex-
perimental results, when the final residual graph of a random
instance with given parameters q and � after leaf-removal is
almost of isolated variable nodes with probability 1, this in-
stance is satisfiable with high probability. Thus, the lower-
bound estimation �L for satisfiability threshold of random
MAS instances can be obtained by the leaf-removal analysis
above. The numerical results of leaf-removal for random
MAS instance are shown in Table I and Fig. 5.

D. Algorithm and numerical experiments for the satisfiability

Based on the above heuristic strategies of leaf-removal
and Gaussian decimation, we propose a complete algorithm
to solve the instances of MAS. This algorithm consists of
three parts:

�a� the first part is the leaf-removal process to decimate
the leaves of both linear and nonlinear type equations, which
is to simplify the equations;

�b� the second part is a variant of the Gaussian decimation
algorithm, which determines the nondiagonal and diagonal
variables which play different roles in the judgment process;

TABLE II. The numerical results of satisfiability threshold.

q 0 0.1 0.2 0.3 0.4

�c 0.918�0.005 0.795�0.017 0.791�0.015 0.786�0.019 0.779�0.033

q 0.5 0.6 0.7 0.8 0.9

�c 0.771�0.026 0.761�0.026 0.713�0.0153 0.636�0.030 0.558�0.029
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FIG. 5. �Color online� The numerical results of the size of the
percolation core after leaf-removal process with different values of
q for MAS.
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FIG. 6. �Color online� The phase transition of satisfiability of
MAS with q=0.1 and 0.9, respectively, by numerical experiments
on 500 instances with N=100, 200, and 300. The left graph shows
that the points of intersection locate in the interval 0.778��
�0.812. The right graph shows that the points of intersection locate
in the interval 0.529���0.587.
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�c� the third part is the branching process with backtrack-
ing based on the properties of the influence propagation
among the variables, which could be considered as a com-
plete algorithm on the ordered set of variables to check the
satisfiability of MAS.

A more detailed version of this algorithm is shown in the
following.

Leaf-removal Reordered Algorithm

INPUT: EquationSet S, Linear-equationSet SI and
Nonlinear-equationSet SII

OUTPUT: SAT or UNSAT

while �S contains equations satisfying the leaf-removal con-
ditions in section IV.C�

�delete these equations from S�
if S=�

� return SAT�
else

�run Gaussian decimation on S

get the resulted coefficient matrix A by column permuta-
tion

reorder variables from off-diagonal variables to diagonal
variables in A

while �the current variable is off-diagonal�
� if �the current variable is not assigned�

�assign the current variable to 1

assign related variables by influence propagation as
in Eq. �9��

if �contradiction occurs�
�assign the current variable to 0

assign related variables by influence propagation as
in Eq. �8��

if �contradiction occurs�
�backtrack�

else

�go to the next variable�
�

if�the current variable is diagonal�
� return SAT�

else

� return UNSAT�
�

We run leaf-removal reordered �LRR� algorithm on in-
stances of MAS for different values of q to estimate the

locations of satisfiability thresholds. Here, the points of in-
tersection of different curves are considered as the approxi-
mate locations of satisfiability thresholds. Figure 6 shows the
phase transition of satisfiability of MAS instances with N
=100, 200, and 300 when the parameter q takes the values of
0.1, and 0.9, respectively. In the numerical experiments on
instances with N=500, we take the midpoint of the interval
which consists of the possible points of intersection in the
case of certain value of q as the approximations of satisfi-
ability threshold �c. These approximations of satisfiability
thresholds and variations are shown in Table II and as the red
triangles in Fig. 4.

In order to compare the LRR algorithm to classical Davis-
Putnam-Logemann-Loveland �DPLL� algorithm �38�, we
study results of the numerical experiments on these two al-
gorithms. We run 1000 instances with 25, 50, and 100 vari-
ables in the case of different equation density �=0.2, 0.4,
0.6, 0.8, and 1, respectively, when q=0.5. There exists a
large gap of the time of computation between these two al-
gorithms. Table III shows the ratios of the running time of
LRR algorithm to DPLL algorithm for the instances of MAS.

V. CONCLUSION

In this work, we study the correlation between the mag-
netization of generators and the clustering of solutions of
XORSAT problem by Gaussian elimination process. Then,
we investigate the partially ordered correlation and the char-
acteristics of maximal elements of solutions of MAS-
nonlinear problem. Furthermore, we estimate the lower and
upper bounds of the satisfiability threshold of MAS by ana-
lyzing unit-clause and leaf-removal mechanism. Taking the
advantage of the explicit algebraic and geometrical charac-
teristics of solutions of two subproblems septated artificially,
a complete algorithmic frame to solve MAS problem is pro-
posed and used to approximate the satisfiability threshold.

By studying the algebraic properties of Boolean equa-
tions, we can explore the implicated connection to the onset
of algorithmic hardness and organization of solutions. To in-
vestigate the essential hardness for NP problems, algebraic
methods and geometrical measurement will be enlightening
alternatives. It is interesting to study how the generators of
the subproblems construct the whole solution space and the
detailed organizations of solutions by the intersection of a
group and a semigroup.
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TABLE III. The efficiency comparison between LRR and DPLL algorithms.

� 0.2 0.4 0.6 0.8 1

R�N=25� 14.9359 36.0753 298.1746 89.7436 8.6022

R�N=50� 96.5909 133.7766 582.3853 565.8602 132.8846

R�N=100� 161.9892 424.8925 753.1269 41.1174 20.8237
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